
Extracted from:

Modular Java
Creating Flexible Applications

with OSGi and Spring

This PDF file contains pages extracted from Modular Java, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Craig Walls.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-40-9

ISBN-13: 978-1934356-40-1

Printed on acid-free paper.

P1.0 printing, May 2009

Version: 2009-6-2

http://www.pragprog.com


DECLARING SERVICES 117

To get started with Spring-DM, we’ll need to add these bundles to our

project:

dwmjs% pax-import-bundle -g org.springframework.osgi -a spring-osgi-extender \

? -v 1.2.0 -- -DimportTransitive -DwidenScope

[INFO] Scanning for projects...

...

[INFO] ------------------------------------------------------------------------

[INFO] BUILD SUCCESSFUL

[INFO] ------------------------------------------------------------------------

[INFO] Total time: 8 seconds

[INFO] Finished at: Fri Mar 20 15:33:34 CDT 2009

[INFO] Final Memory: 9M/18M

[INFO] ------------------------------------------------------------------------

dwmjs%

Here we’ve asked Pax Construct to add version 1.2.0 of the Spring-DM

extender bundle (identified with a group ID of org.springframework.osgi

and an artifact ID of org.springframework.osgi.extender) to the project. In

addition to the Spring-DM extender bundle itself, we’ve also asked that

pax-import-bundle also pull in transitive dependencies (-DimportTransitive)

and to consider all compile and runtime dependencies as potential bun-

dles (-DwidenScope).

The Spring-DM bundles are now in place and are ready to help us

declaratively publish the index service.

6.2 Declaring Services

The first step in declaring a service in Spring-DM is to wire a bean in

the Spring application context. In Spring, a bean is any object (not nec-

essarily a JavaBean) that is instantiated and managed by the Spring

Framework. A common way of configuring the beans that Spring cre-

ates is to define a Spring application context in an XML file. For exam-

ple, consider this Spring configuration XML (index-context.xml) that we’ll

use to define an application context for the index service bundle:

Download dwmjs/index/src/main/resources/META-INF/spring/index-context.xml

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:compass="http://www.compass-project.org/schema/spring-core-config"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.compass-project.org/schema/spring-core-config

http://www.compass-project.org/schema/spring-compass-core-config-2.0.xsd">

<bean id="indexService"

class="dwmj.index.internal.IndexServiceImpl">

<constructor-arg ref="compass" />

</bean>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmjs/index/src/main/resources/META-INF/spring/index-context.xml
http://www.pragprog.com/titles/cwosg


DECLARING SERVICES 118

<compass:compass name="compass" >

<compass:connection>

<compass:file path="/tmp/dudeindex" />

</compass:connection>

<compass:mappings>

<compass:class name="dwmj.domain.JarFile"/>

</compass:mappings>

</compass:compass>

<compass:session id="compassSession" />

</beans>

Here we’ve declared two beans. The first is defined with the <bean>

element. This bean tells Spring to create an instance of IndexServiceImpl

and to give it an ID of indexService. What’s especially interesting about

this bean is that we’re telling Spring to instantiate it by calling a single-

argument constructor and passing in a reference to another bean.

Specifically, Spring should construct IndexServiceImpl with a reference

to a bean whose ID is compass.

That brings us to the second bean. Instead of using a generic <bean>

element to declare the compass bean, we’re using elements from a

Compass-specific configuration namespace provided as part of the

Compass library. Ultimately, this declaration creates a bean of type

org.compass.core.Compass, suitable for the first argument of the IndexSer-

viceImpl constructor.

As mentioned before, Spring-DM creates an application context by

reading all XML files in the META-INF/spring directory. Since we’re build-

ing the bundle using Maven, we’ll need to place index-context.xml in the

src/main/resources/META-INF/spring directory of the index bundle project.

But it won’t be alone. In addition to the core Spring configuration file,

we’ll also create a separate Spring configuration file (index-osgi.xml) that

tells Spring-DM to publish the indexService bean to the OSGi service

registry:

Download dwmjs/index/src/main/resources/META-INF/spring/index-osgi.xml

<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<service ref="indexService"

interface="dwmj.index.IndexService" />

</beans:beans>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmjs/index/src/main/resources/META-INF/spring/index-osgi.xml
http://www.pragprog.com/titles/cwosg


DECLARING SERVICES 119

Using Spring-DM with Java 1.4

In Spring-DM, it’s common for beans from different applica-
tion contexts to interact with each other concurrently. To avoid
deadlocks when beans are requested from the application
contexts, Spring-DM needs concurrent collections. Java 1.5
and later provide concurrent collections out of the box. But
Java 1.4 does not.

To add concurrent collection classes for Java 1.4, you’ll need to
add the Backport bundle. First, because the Backport libraries
in the central Maven repository aren’t OSGi-ready bundles,
you’ll need to add the Spring-DM repository:

dwmjs% pax-add-repository -i spring-osgi -u \
? http://s3.amazonaws.com/maven.springframework.org/osgi \
? -- -Dsnapshots

Then import the Backport bundle into the project:

dwmjs% pax-import-bundle -g org.springframework.osgi -a \
? backport-util-concurrent.osgi -v 3.0-SNAPSHOT -- \
? "-DimportPackage=sun.misc;resolution:=optional,*"
...
dwmjs%

To keep the OSGi-specific configuration separate from the generic bean

definitions, I’ve placed this service declaration in a separate configura-

tion file. The <service> element declares that the bean referenced by

the ref= attribute should be published to the OSGi service registry with

the interface specified in the interface= attribute. In this case, it’s the

index service bean that we declared in index-context.xml, which should

be published with the dwmj.index.IndexService interface.

And that simple bit of Spring configuration is all we need to do to

declare the index service bean as an OSGi service. You’ve no doubt

noticed that this is simpler than programmatically publishing it using

a bundle activator. All of the hassles of working directly with the OSGi

API go away and are replaced with a simple entry in a Spring applica-

tion context configuration file.

Speaking of not having to deal with the OSGi API, we no longer need

the index bundle’s activator. We needed it only to create and publish

the index service.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg


DECLARING SERVICES 120

But since Spring-DM’s handling that for us now, we can get rid of it:

dwmjs% cd index

index% rm src/main/java/dwmj/index/internal/IndexServiceActivator.java

index%

We’ll also need to delete the Bundle-Activator: entry from the osgi.bnd file.

Now that we’ve swapped out the bundle activator for a Spring-DM ser-

vice declaration, let’s rebuild the index service. . .

index% mvn install

[INFO] Scanning for projects...

...

[INFO] ------------------------------------------------------------------------

[INFO] BUILD SUCCESSFUL

[INFO] ------------------------------------------------------------------------

[INFO] Total time: 7 seconds

[INFO] Finished at: Fri Mar 20 15:47:34 CDT 2009

[INFO] Final Memory: 13M/31M

[INFO] ------------------------------------------------------------------------

index%

. . . and then provision it:

index% cd ..

dwmjs% pax-provision

[INFO] Scanning for projects...

...

Caused by: java.lang.ClassNotFoundException:

org.compass.core.config.binding.metadata.AsmMetaDataReader

not found from bundle [com.dudewheresmyjar.index]

...

osgi>

Oops! It looks like our index bundle had a little trouble getting started.

Now that we’re using Compass’ configuration namespace for Spring,

our bundle needs to import some packages that we’re not currently

importing. But wait—the index service is already using Compass in

some capacity, and we haven’t had to import any Compass packages

before. Why must we import Compass packages now?

The answer is a bit nonobvious. As you’ll recall, our build is using the

BND tool to generate the MANIFEST.MF file from the osgi.bnd file. When we

were programmatically working with Compass in the bundle activator,

BND was able to figure out what packages to import by analyzing the

activator and the service classes. But now the activator class has gone

away, and we’re declaring much of the Compass stuff in the Spring

configuration file.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg


DECLARING SERVICES 121

Unfortunately, BND doesn’t analyze the Spring configuration file when

putting together its list of packages to import. So, we’ll have to add

those imports to osgi.bnd ourselves:

Download dwmjs/index/osgi.bnd

Import-Package: *, \

org.compass.core.engine.naming, \

org.compass.core.executor.concurrent, \

org.compass.core.cache.first, \

org.compass.core.lucene.engine.analyzer, \

org.compass.core.lucene.engine.optimizer, \

org.compass.core.transaction, \

org.apache.lucene.index, \

org.apache.lucene, \

org.apache.lucene.document, \

org.apache.lucene.queryParser, \

org.apache.lucene.search, \

org.apache.lucene.store, \

org.apache.lucene.util,\

org.compass.core.config.binding.metadata,\

org.compass.core.json.impl.converter

The first item in the import list is *, which tells BND to import all

packages that it finds while analyzing Java classes—the default import

behavior. What follows are the packages that are needed by Compass.1

Let’s build the index bundle and try provisioning it again:
dwmjs% pax-provision

[INFO] Scanning for projects...

...

Caused by: java.lang.NoClassDefFoundError:

org/springframework/transaction/PlatformTransactionManager

...

osgi>

We have one more hurdle to overcome. It seems that Spring can’t create

the compass bean because it can’t find org.springframework.transaction.

PlatformTransactionManager. What? Spring cannot find one of its own

classes?

As it turns out, PlatformTransactionManager resides in a separate bun-

dle from the Spring bundles that we’ve already installed. To get past

this problem, we’re going to need to add Spring’s transaction support

bundle to our project.

1. I figured out what packages are needed by a tedious trial and error effort. I’m sparing

you the effort of walking you through that exercise. But if you’d like to try it yourself,

you can start by importing org.compass.core.engine.naming—the package containing the

class that was the subject of the ClassNotFoundException we encountered—and following

the breadcrumbs from there.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/cwosg/code/dwmjs/index/osgi.bnd
http://www.pragprog.com/titles/cwosg


DECLARING SERVICES 122

dwmjs% pax-import-bundle -g org.springframework -a spring-tx -v 2.5.6

[INFO] Scanning for projects...

[INFO] ------------------------------------------------------------------------

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] ------------------------------------------------------------------------

[INFO] [pax:import-bundle]

[INFO] Importing Spring Framework: Transaction to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] ------------------------------------------------------------------------

[INFO] BUILD SUCCESSFUL

[INFO] ------------------------------------------------------------------------

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 15:54:07 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] ------------------------------------------------------------------------

dwmjs%

With the Spring transaction support bundle in place, let’s try to provi-

sion all of our bundles one more time:

dwmjs% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.3.0

4 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.3.0

5 ACTIVE org.springframework.osgi.extender_1.2.0

6 ACTIVE org.springframework.osgi.core_1.2.0

7 ACTIVE org.springframework.osgi.io_1.2.0

8 ACTIVE com.springsource.slf4j.org.apache.commons.logging_1.5.0

9 ACTIVE com.springsource.slf4j.api_1.5.0

Fragments=10

10 RESOLVED com.springsource.slf4j.log4j_1.5.0

Master=9

11 ACTIVE org.springframework.aop_2.5.6

12 ACTIVE org.springframework.beans_2.5.6

13 ACTIVE org.springframework.context_2.5.6

14 ACTIVE org.springframework.core_2.5.6

15 ACTIVE org.springframework.test_2.5.6

16 ACTIVE com.springsource.org.aopalliance_1.0.0

17 ACTIVE org.springframework.transaction_2.5.6

18 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg


DECLARING SERVICES 123

19 ACTIVE org.compass-project.compass_2.1.1

20 ACTIVE com.dudewheresmyjar.index_1.0.0.SNAPSHOT

21 ACTIVE com.dudewheresmyjar.spider_1.0.0.SNAPSHOT

osgi>

So far so good. There were no exceptions thrown that time, and all of

our bundles are active. Let’s use the bundle command to dig a little

deeper into the index bundle to see whether it is publishing the index

service:

osgi> bundle 20

initial@reference:file:com.dudewheresmyjar.index_1.0.0.SNAPSHOT.jar/ [20]

Id=20, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmjs/

runner/equinox/org.eclipse.osgi/bundles/20/data

Registered Services

{dwmj.index.IndexService}={org.springframework.osgi.bean.name=indexService,

Bundle-SymbolicName=com.dudewheresmyjar.index,

Bundle-Version=1.0.0.SNAPSHOT, service.id=26}

{org.springframework.osgi.context.DelegatedExecutionOsgiBundleApplicationContext,

org.springframework.osgi.context.ConfigurableOsgiBundleApplicationContext,

org.springframework.context.ConfigurableApplicationContext,

org.springframework.context.ApplicationContext,

org.springframework.context.Lifecycle,

org.springframework.beans.factory.ListableBeanFactory,

org.springframework.beans.factory.HierarchicalBeanFactory,

org.springframework.context.MessageSource,

org.springframework.context.ApplicationEventPublisher,

org.springframework.core.io.support.ResourcePatternResolver,

org.springframework.beans.factory.BeanFactory,

org.springframework.core.io.ResourceLoader,

org.springframework.beans.factory.DisposableBean}=

{org.springframework.context.service.name=com.dudewheresmyjar.index,

Bundle-SymbolicName=com.dudewheresmyjar.index,

Bundle-Version=1.0.0.SNAPSHOT, service.id=27}

...

osgi>

It looks like that worked, as evidenced by the first entry under the Reg-

istered Services header. Notice that there’s a lot of information about

the service, including the interface that it’s published under, the bun-

dle that publishes the service, and the Spring bean that provides the

service.

You may have noticed that there’s another entry under Registered Ser-

vices—where’d that come from? In addition to publishing the services

declared using the <service> element, Spring-DM also publishes the

Spring application context as a service. And, it’s published under a

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg


INJECTING SERVICES INTO CONSUMERS 124

How to Not Publish the Spring Context as a Service

If you’d rather not have a bundle’s Spring context published as
a service, you’ll need to say so with the Spring-Context: header:

Spring-Context: META-INF/spring/*.xml;publish-context:=false

By setting the publish-context directive to false, we’re asking
Spring-DM to go ahead and load the Spring context using XML
files in META-INF/spring, but not to publish the context in the
OSGi service registry.

baker’s dozen of interfaces, any of which you can use to retrieve the

bundle’s Spring context.

Now that we’ve converted the index bundle to use Spring-DM, let’s turn

our attention to the spider bundle to see whether Spring-DM can help

us eliminate all of the code that we wrote to consume the index service.

6.3 Injecting Services into Consumers

As you’ll recall, there’s much more to consuming a service than pub-

lishing it. A service consumer must carefully deal with the transitivity

of services to make sure that it’s not trying to use a service that has

gone away or that has been replaced with a newer version. All of that

service management resulted in a lot of code in both the spider bundle’s

activator and in the spider implementation class.

Spring-DM was able to eliminate OSGi-specific code in our index bun-

dle. Can it do the same for the spider bundle? You bet! In fact, as

you’ll soon see, consuming a service with Spring-DM isn’t much dif-

ferent from publishing a service.

First things first. . . just as with the index bundle, we’re no longer going

to need the bundle activator for the spider bundle. So, let’s go ahead

and ditch it:

dwmjs% cd spider

spider% rm src/main/java/dwmj/spider/impl/SpiderActivator.java

Be sure to remove the Bundle-Activator: entry from osgi.bnd, too.

Now that the spider’s bundle activator is gone, we no longer have a way

to give the MavenSpider a service tracker to look up the index service.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/cwosg


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Modular Java’s Home Page

http://pragprog.com/titles/cwosg

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cwosg.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/cwosg
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cwosg
www.pragprog.com/catalog

